讲座时间:2025年11月7日(周五) 16:00-17:00
地点:综合楼615会议室
报告题目:Optimal Replacement Policy for K-out-of-N Systems with Periodic Imperfect Inspections
报告人简介:
胡家文,电子科技大学副研究员,四川省天府峨眉计划科技人才,TCL青年学者。围绕高端装备状态监测与智能运维开展研究,主持国家自然科学基金面上2项和青年1项,四川省重大科技专项2项(校内负责)、重点研发1项(校内负责)、面上项目1项,以及多项工业部门科研任务。以第一/通讯作者在OR、NRL、IISE Transactions、IEEE TII、ITR、RESS等本领域权威期刊发表SCI检索论文25篇;授权发明专利5项;获四川省科技进步三等奖,电子科技大学教学成果一等奖,电子科技大学学术新人奖等。
报告摘要:
The K-out-of-N system structure is widely used in industrial and military applications for its high reliability, and condition-based maintenance is a promising way to enhance maintenance efficiency. While existing studies on inspection and replacement policies often assume perfect inspections, real-world inspections can be imperfect due to noise and disturbances. This study investigates an optimal replacement policy for K-out-of-N systems with periodic imperfect inspections. We model component degradation with a three-state continuous-time Markov chain and use a state-observation matrix for imperfect inspections. We first analyze a 1-out-of-2: G system using a partially observable Markov decision process to derive the optimal policy that minimizes long-run discounted maintenance costs. The resulting maintenance policy is a two dimensional control-limit policy, determined using a value iteration algorithm. We then extend this model to a general K-out-of-N: G system and address the curse of dimensionality with a point-based value iteration method. A numerical study and sensitivity analysis demonstrate the effectiveness of our proposed policy.
友情链接: 浙江工商大学统计学院 | 中国人民大学统计学院 | 厦门大学计划统计系 | 中国统计学会 |
版权所有 ©2017 浙江工商大学统计学院 All Right Reserver. Email:tjx@zjgsu.edu.cn 技术支持:名冠电子商务
地址:浙江省杭州市下沙高教园区学正街18号 联系电话:(86)571-28008085 浙ICP备15014656号 浙公网安备33011802000512号