题目:Statistical Analysis of Dynamic Network Data with Application to Identify Transmission Risks of Respiratory Infections
报告人:赵晓兵
报告时间:2023年5月18日10:40—11:20
地点:综合楼644会议室
报告人简介:
赵晓兵,博士,现为浙江财经大学数据科学学院教授,博士生导师。主要研究领域包括治愈模型、复发事件模型、面板计数数据、高维数据降维、大规模网络数据分析等。先后主持国家自然科学基金面上项目、国家社科基金一般项目等国家级项目4项,在主流统计学和精算学期刊,例如 Statistics in Medicine; Statistica Sinica; Journal of Multivariate Analysis, Journal of Statistical Planning and Inference ; Computational Statistics and Data Analysis; Lifetime Data Analysis; Insurance: Mathematics and Economics等发表论文60多篇。
报告摘要:
The analysis of dynamic network data based on statistical models has attracted considerable attention in social and biological research fields. In this paper, we propose a statistical model for the recurrent events of instantaneous interactions between the nodes using a Poisson process with a semiparametric mean function of the recurrent interactions and latent membership of the nodes. A joint model of the recurrent interactions process and a discrete-time observation process is proposed to characterize the impact of the time-slices on the snapshots. A variational expectation-maximization algorithm is applied to estimate the connectivity parameters and the latent variables. Simulation studies and real data are used to illustrate the performance of the proposed model and methodology.
友情链接: 浙江工商大学统计学院 | 中国人民大学统计学院 | 厦门大学计划统计系 | 中国统计学会 |
版权所有 ©2017 浙江工商大学统计学院 All Right Reserver. Email:tjx@zjgsu.edu.cn 技术支持:名冠电子商务
地址:浙江省杭州市下沙高教园区学正街18号 联系电话:(86)571-28008085 浙ICP备15014656号 浙公网安备33011802000512号